Клеточные мембраны PDF Печать E-mail

Плазматическая мембрана — обязательный компонент каждой клетки. Её основой являются два слоя липидов, в которые встроены белки. Некоторые мембранные липиды и белки соединены с нерегулярными олигосахаридами — это гликолипиды и гликопротеины. Кроме плазматической мембраны клетки могут содержать внутренние мембраны, изолированные друг от друга и от плазматической. В результате в клетке формируются многочисленные внутриклеточные образования — органоиды клетки (греч. organon — орган, eidos — вид), или органеллы.

Мембрана обладает свойством избирательной проницаемости. Небольшие незаряженные молекулы могут проникать непосредственно через липидный бислой. Другие молекулы проходят через мембрану только в том случае, если для них есть специальные белки-переносчики. В состав мембраны входят белки, выполняющие и ряд других функций. Во-первых, это белки-ферменты, которые катализируют химические реакции, проходящие на поверхности мембраны. Во-вторых, белки, которые принимают сигналы. Среди них можно назвать рецепторы различных гормонов и медиаторов и т.д.

Избирательная проницаемость внутренних мембран обеспечивает различный химический состав и строение клеточных органоидов. Наличие органоидов обеспечивает возможность одновременного протекания огромного количества биохимических процессов, разграниченных в пространстве мембранами. Самый большой из органоидов — клеточное ядро — противопоставляют остальной части клетки — цитоплазме (греч. kytos — вместилище и plasma). В ядре находится основная масса клеточной ДНК, и происходят процессы репликации и транскрипции.

По признаку наличия или отсутствия клеточного ядра все живые организмы можно разделить на две группы — прокариоты (греч. pro — до; karion — ядро) и эукариоты. (греч. eu — истинный, настоящий). К прокариотам, например, относятся бактерии и синезеленые водоросли; к эукариотам — простейшие, одноклеточные и колониальные водоросли, грибы, растения и животные.

Мембраны — это пленки толщиной 5-7 нм, состоящие из липидов и белков. Относительное количество белков и липидов в составе разных мембран варьирует: иногда преобладают липиды, иногда большую часть массы мембраны составляют белки. В некоторых мембранах белки и липиды содержатся поровну. Липиды располагаются в два слоя. Гидрофильные "головки" молекул обращены наружу, а гидрофобные "хвосты" — внутрь мембраны. Способность липидов в водных растворах самопроизвольно объединяться подобным образом обеспечивает замкнутость мембран. Другими словами, мембраны всегда существуют в виде пузырьков. Если сделать иголкой "дырку" в мембране, то при удалении иголки липиды сомкнутся, т.е. они обеспечивают целостность мембраны.

Белки в составе мембраны могут располагаться по-разному. Некоторые белки проходят через всю толщину мембраны (трансмембранные белки). Другие — либо погружаются в слой липидов, взаимодействуя с их гидрофобными хвостами, либо лежат на поверхности мембраны, удерживаемые связями с гидрофильными головами липидов или другими белками мембран (это так называемые периферические, или наружные, белки).

Очевидно, что та часть белковой молекулы, которая погружена в липидный бислой, является гидрофобной. Таким образом, белки в составе мембраны имеют строго определенную конформацию, которая изменится, если их извлечь из мембраны. Среди белков, входящих в состав мембраны, есть белки, к которым присоединены многочисленные гетероолигосахариды. Это гликопротеины. Они служат опознавательными знаками на поверхности мембран, так же как и гетероолигосахариды, входящие в состав гликолипидов. Например, олигосахариды на поверхности эритроцитов определяют группы крови человека.
Мембраны по своей консистенции похожи на растительное масло. В такой среде (больше жидкой, чем твердой) молекулы могут достаточно свободно перемещаться. Способность молекул в составе мембраны к перемещению получила название текучести мембран.

Было показано, что молекулы липидов перемещаются вдоль слоя очень часто. Наоборот, перемещение из одного слоя в другой — редчайшее событие. Поэтому состав липидов в слоях мембраны, как правило, различен. Что касается белков, то они также могут "плыть" вдоль мембраны, но перемещаться с одной стороны на другую или переворачиваться относительно липидного бислоя они не могут.

Мембраны могут быть и более жидкими (более текучими), и более твердыми (менее текучими). Текучесть мембраны зависит от того, какие липиды входят в состав мембраны и какие жирные кислоты входят в состав липидов. При повышении температуры подвижность липидов в бислое увеличивается, связи между молекулами ослабевают, текучесть мембраны увеличивается. При понижении температуры подвижность липидов уменьшается, а их гидрофобные хвосты образуют жесткую структуру, при этом текучесть мембраны уменьшается.

Необходимо, чтобы мембрана обладала определенной степенью текучести, при которой молекулы белков способны менять свою конформацию так, как это нужно для их нормального функционирования. Чем меньше текучесть мембраны, тем труднее белкам изменять свою форму при химическом взаимодействии, а это может привести к замедлению скорости химической реакции, вплоть до полной ее остановки. Таким образом, функция липидов заключается не только в том, что они поддерживают целостность мембран, но и в регуляции работы встроенных в мембрану белков.

Было показано, что растения и микроорганизмы при изменении внешних условий (например, температуры) меняют соотношение насыщенных и ненасыщенных жирных кислот в составе фосфолипидов мембран и таким образом регулируют ее текучесть. У животных текучесть мембраны может уменьшать холостерол.

Плазматическая мембрана, или плазмалемма (греч. lemma - оболочка), и протоплазма — обязательные компоненты всех клеток. У эукариот протоплазма разграничена внутренними мембранами на полости различной формы — клеточные мембранные органеллы, или органоиды. Некоторые органоиды достаточно велики, и их можно увидеть в световой микроскоп. Самый крупный органоид — клеточное ядро, — где, как мы уже говорили, сосредоточена генетическая информация о строении клетки, происходят процессы репликации и транскрипции. Ядро отделено от цитоплазмы ядерной оболочкой, состоящей из двух мембран.

В цитоплазме находятся многочисленные органоиды. Они различаются друг от друга по химическому составу, морфологии и выполняют в клетке разные функции, об этом мы будем говорить позже. Пространство между плазматической мембраной и мембранами органоидов получило название цитозоля. Мембраны различных органелл отличаются по составу не только белков, но и липидов. Прокариотические клетки практически не содержат внутриклеточные мембраны, т.е. химические реакции, происходящие в них, не разобщены в пространстве. Лишь у некоторых видов прокариот имеются впячивания плазматической мембраны, которые можно рассматривать как примитивные органоиды.

Размеры прокариотических клеток составляют в среднем 0,5 -5 мкм, размеры эукариотических — в среднем от 10 до 50 мкм. Хотя встречаются клетки длиной несколько сантиметров. Животных и растения относят к эукариотам. Принцип строения их клеток одинаков, но имеются некоторые отличия в строении: в растительных клетках есть органеллы, которых нет в животных клетках (и наоборот). Позже мы рассмотрим их подробнее.

Интересные статьи по биологии:

1) Питание и выделение

2) Энергетическая эффективность аэробного обмена веществ