Законы Менделя PDF Печать E-mail

Мендель утверждал, что наследственные задатки неизменны: у гибридного организма рецессивный признак не проявляется, но он остается неизмененным и может проявиться во втором поколении гибридов у четвертой части организмов, в которых оба наследственных задатка определяют рецессивный признак. Каждая пара альтернативных признаков ведет себя независимо от другой пары, что в случае двух пар признаков приводит к расщеплению 9:3:3:1.
Г. Мендель сформулировал основные принципы гибридологического анализа.

Прежде всего, для получения гибридов использовать формы, в которых не наблюдается расщепления признаков (т.е. гомозиготы). Обязательно анализировать потомство каждой конкретной родительской пары и получать как можно более многочисленное потомство для того, чтобы характер расщепления лучше соответствовал теоретически ожидаемому, другими словами, учитывать статистический характер наследования.
Принято выделять три закона Менделя: закон единообразия гибридов первого поколения (1), закон расщепления во втором поколении (2) и закон независимого комбинирования признаков (3).

Современники Г. Менделя не оценили значение его работ, они были забыты и только в 1900 г. законы Менделя были переоткрыты сразу тремя
исследователями. Сделали они это независимо друг от друга и на разных объектах в 1900 г.

Сопоставление поведения генов с поведением хромосом привело к созданию хромосомной теории наследственности. Она была сформулирована в 1900-1903 г.г. американским цитологом Уильямом Сеттоном и немецким эмбриологом Теодором Бовери и в дальнейшем развита американским генетиком Томасом Морганом и его учениками. Суть хромосомной теории наследственности заключается в следующих положениях: гены расположены в хромосомах; наследование признаков в ряду поколений обеспечивается передачей хромосом через гаметы зиготам; в одной хромосоме сосредоточены вполне определенные гены, отвечающие за много признаков; расположены эти гены линейно по длине хромосомы.

Если гены, определяющие развитие двух разных признаков, расположены рядом в одной хромосоме, т.е. являются сцепленными друг с другом, то расщепление будет соответствовать тому, что наблюдается при моногибридном скрещивании. Другими словами, расщепления 3:1 (1:2:1) или 9:3:3:1 характеризуют не количество анализируемых генов, а количество хромосом, в которых эти гены находятся.

Сцепление генов может нарушаться при кроссинговере. Чем дальше по длине хромосомы находятся анализируемые гены, тем чаще между ними будет происходить кроссинговер, и тем чаще будут появляться кроссоверы — особи, у которых сочетание аллелей разных генов будет не таким, как у родительского организма. Можно подсчитать частоту кроссинговера и определить генетическое расстояние между генами. Для этого нужно скрестить гетерозиготную по двум и более генам особь с рецессивной гомозиготой. У потомков такого скрещивания можно легко по фенотипу установить генотип. Генетическое расстояние измеряется в % кроссоверов от общего числа потомков скрещивания.

У гетерозиготного родителя в одной хромосоме находятся доминантные аллели А, В, С (сцеплены друг с другом), в другой — рецессивные а, b, c. Для того, чтобы определить расстояние между генами А и В, нужно подсчитать число потомков, у которых произошел кроссинговер между этими генами.
Таких потомков два. Соответственно для генов В и С — восемь. Общее число потомков — двадцать. Следовательно, расстояние между А и В получилось равно 2:20 X 100% = 10%, а между В и С — 8:20 X 100% = 40%.

Скрещивание с рецессивной гомозиготой называется анализирующим. Оно используется для того, чтобы установить генотип особи с доминантным признаком.
Гетерозиготная особь в анализирующем скрещивании даст расщепление потомков на два или больше фенотипических классов в зависимости от числа анализируемых генов. Число классов равно числу различающихся гамет, образующихся у анализируемой особи. Гомозиготы дадут в анализирующем скрещивании потомков одного генотипа и фенотипа.

При взаимодействии генов расщепление будет отличаться от того, что наблюдается при независимом наследовании. Обратимся к примеру с окраской глаз у плодовой мушки. Если ген А отвечает за образование фермента 1, а ген В — фермента 2, то мушки с генотипами AAbb и aaBB будут иметь глаза ярко-красного цвета. В результате их скрещивания возникнет гетерозигота AaBb с глазами темно-красного цвета. Во втором поколении будет наблюдаться расщепление 9:7. В зависимости от того, как взаимодействуют гены при формировании признака, могут наблюдаться и другие типы расщепления, например, 9:4:3, 13:3, 12:3:1.
В гибридологическом анализе используют также реципрокные (лат. reciprocus — взаимный) скрещивания, при которых из одной линии берутся и самцы, и самки и скрещиваются с самками и самцами другой линии. Реципрокные скрещивания позволяют выявить сцепленное с полом наследование, т.е. гены, расположенные в той половой хромосоме, которая присутствует и у самцов, и у самок. Для некоторых организмов, например человека, наследование признака можно установить, проводя генеалогический анализ, или анализ родословных.

Интересные статьи по биологии:

1) Возникновение жизни

2) Применение радиоактивных изотопов