Новейшие методы селекции PDF Печать E-mail

Человек с незапамятных времен использует биологические процессы при изготовлении хлеба и вина, кисломолочных продуктов и пива, а с середины XX века — для получения антибиотиков, ферментов и других веществ. Сейчас мы умеем выращивать на питательных средах клетки, взятые из организмов растений и животных. Их также можно использовать как фабрики для производства необходимых человеку продуктов.

Из растительных клеток, выращиваемых в искусственных условиях, можно вырастить целые растения. Эта технология позволяет ускорить процесс создания новых форм растений.

Кроме того, в последние десятилетия появились методы, которые позволяют создавать новые формы клеток или организмов не путем отбора случайно возникших мутаций или комбинаций генов, а целенаправленно внедряя в клетки генетический материал, обеспечивающий развитие нужных для человека признаков, в том числе необычных для данной клетки или целой особи. Эти методы получили название генной инженерии.

Научившись культивировать клетки животных и растений в искусственных условиях, человек очень быстро стал манипулировать ими, создавая клетки с определенными свойствами. Это направление получило название клеточной инженерии. Например, можно соединять клетки разного происхождения, получая клеточные гибриды, в которых объединены свойства двух типов клеток. Так, созданы гибриды опухолевых клеток и клеток, продуцирующих антитела. Эти гибридные клетки (гибридомы, от hybrida и греч. oma опухоль) соединили в себе способность к неограниченному размножению со свойством синтезировать и выделять антитела.

Антитела можно выделять и из крови животных, предварительно иммунизированных каким-либо антигеном. Полученные именно таким путем антитела с давних пор используют для создания пассивного иммунитета. Как правило, используемая сыворотка крови содержит смесь антител, специфичных к одному антигену, но взаимодействующую с различными его участками. Каждый сорт антител вырабатывается своим клоном лимфоцитов к участку белка размером в несколько аминокислотных остатков. Белок-антиген из нескольких сотен мономеров может иметь на своей поверхности около десятка участков, узнаваемых различными антителами. Эти антитела называют поликлональными.

С помощью гибридом можно получать антитела одного сорта, так называемые моноклональные. Моноклональные антитела используют для диагностики и обнаружения небольшого количества клеток. Они находят применение не только в научно-исследовательских лабораториях, но и в практической медицине. Например, их можно использовать как переносчиков токсических веществ, избирательно убивающих раковые клетки. Для этого нужно получить антитела к клеткам опухоли. Выбрать среди них те, которые реагируют только с опухолевыми клетками, но не взаимодействуют с нормальными. И затем присоединить к ним токсины. Такое “лекарство” будет доставлено точно по адресу: к клетками опухоли.

Растительные клетки, выращиваемые на питательных средах, обладают важным свойством: они сохраняют тотипотентность и из них можно выращивать полноценные целые организмы. Это явление широко используют для получения незараженного вирусами и микроорганизмами посадочного материала. Клеточные культуры получают из здоровых клеток меристемы растений. Затем их размножают в стерильных условиях и регенерируют из них растения.
Клеточные технологии позволяют значительно ускорить селекционный процесс.

Например, нам нужно получить солеустойчивые растения. Для этого на питательной среде с повышенной концентрацией солей мы высеиваем десятки тысяч клеток. Большинство из них эту концентрацию солей не выдерживает и гибнет, но отдельные клетки оказываются солеустойчивыми, из них мы регенерируем растения, которые тоже будут солеустойчивы. По этой схеме и ведутся в настоящее время многие селекционные процедуры по отбору устойчивых к разным факторам клеток, а затем регенерация из них растений.

Культивировать на питательных средах можно не только не соматические, но и генеративные клетки (например, из пыльцевых зерен растений). Из них также можно регенерировать растения. Такие растения будут гаплоидными. Однако если вызвать удвоение числа хромосом в культивируемых генеративных клетках, то выращенные из них растения будут диплоидными, причем полностью гомозиготными. Вспомните, что для получения высокого уровня гомозиготности необходимо не меньше восьми поколений самоопыления или близкородственных скрещиваний. В случае с культурами генеративных клеток эту проблему мы решаем за два поколения, т.е. в 4 раза быстрее.

Интересные статьи по биологии:

1) Потоки вещества и энергии в экосистемах

2) Функциональная популяция